Exploring Stability of Systematic Risk: Sectoral Portfolio Analysis

Ibrahim Onour

API/WPS 1002

Correspondence

Dr. Ibrahim Onour, The Arab Planning Institute, P.O. Box: 5834 Safat. 13059 Kuwait, Tel: (965) 24843130, Fax: (965) 24842935, E-mail: onour@api.org.kw.

Exploring Stability of Systematic Risk: Sectoral Portfolio Analysis

Ibrahim Onour

Abstract

Results in this paper support evidence of time-varying systematic risk (beta coefficients) for five sectors, their securities are traded in Kuwait Stock Market. The paper indicates banks, and real estate sectors exhibit relatively wider range of systematic risk variation compared to the other sectors. As higher volatility in risk factor imply additional difficulty in managing and controlling risk, then wider range of systematic risk imply more exposure to risk. This new interpretation of risk evaluation adds a new element to risk assessment tools, since the standard CAPM approach views risk as high or low depending on whether it is greater or lower than the market beta, which is a unit.

تهمّم الورقة بنمذجة المخاطر المنظمة المتغيرة عبر الزمن لخمس قطاعات يتم تداول أوراقهم المالية في سوق الأسهم الكويتي، وتضم هذه القطاعات البنوك، الخدمات، العقار، الأغذية، الصناعة. توضح نتائج الدراسة بأن أسهم قطاع البنوك والعقار بجانب ارتفاع مخاطرهما فوق مخاطر السوق، يتسمان بمعدل تذبذب أعلى نسبياً مقارنة ببقية القطاعات الأخرى، الأمر الذي يرجح صعوبة إدارة وتقييم محاطر أسهم هذين القطاعين. تقدّح نتائج البحث بأن يصبح مستوى تذبذب المخاطر المنظمة ضمن معايير قياس المحالي الأوراق المتداولة في أسواق الأسهم إذ لا يكفي في رأينا الاعتماد على الطريقة المتبعة في أدبيات الإدارة المالية وهي مقارنة حجم المخاطر المنظمة إذا كانت أكبر أو أقل من الواحد الصحيح.

1. Introduction

How should a rational investor measure the risk of stock market investments? The search for an answer to this question became the major task in financial economics and that led to the development of the Capital Asset Pricing Model (CAPM) which became the centre piece in modern finance textbooks. The CAPM decomposes risk valuation into risk size (risk premium) and risk price (beta⁽¹⁾). According to CAPM the required rate of return on a company's stock (or the cost of equity capital) depends on three components among which the stock's equity beta which measures the risk of company's stock relative to the market risk; or putting it differently, the risk each dollar invested in equity i contributes to the market portfolio. CAPM predicts that low beta stocks should offer low stock returns and higher beta stocks should offer higher returns to compensate for the additional risk borne.

Since the empirical findings of Fama and French (1992, 1993, 1995, 1996, and 1997) the traditional application of CAPM that assume constant beta has been invalidated, and since then research efforts were directed towards time-varying beta estimates. In theory beta estimates should reflect investors' uncertainty about future cash flows to equity, which in turn requires time-varying and thus forward looking beta estimates.

In pursuit for obtaining better beta estimates research focused on the use of time varying volatility models. Recent such work supporting time-varying beta include Mckenzie et al (2000) for U.S. banks; Lie, Brooks and Faff (2000) for the Australian financial sector; Faff, Hillier, and Hillier (2000) for U.K. industry portfolio; Yu (2002) for New Zealand, Moonis and Shah (2002) for the Indian Market, and Kanwer (2006) for the Karachi Market. The empirical implication of all these studies is that portfolio managers need constantly update and re-estimate the relationship between risk factors and returns, contrary to traditional application of CAPM that assumes constant beta coefficient.

An appropriate specification of time-varying volatility depends on what empirical regularities the model should capture. An important phenomena that characterizes volatility of asset returns is the so-called "leverage effect" which refers to the different response of volatility to bad news as compared to good news. To account for asymmetric effect of news on traded asset returns' volatility in this paper we adopt the Glosten, Jagannathan, and Runkle (1993) specification of GARCH model. GJR-GARCH specification separates the effect of negative news on volatility from that of positive news⁽²⁾.

While there is a considerable amount of research in this area for industries in developed and in some emerging stock markets, similar work on GCC and less developed stock markets is lacking. Constrained by the lack of suitable time series data availability for other GCC stock markets, investigation in this paper has been

⁽¹⁾ Beta also called systematic risk, which is the risk that cannot be reduced via a diversification strategy.

⁽²⁾ Engle and Ng (1993) report evidences that, of many GARCH specifications the GJR asymmetric GARCH model provides the best forecast of volatility.

limited to the Kuwait stock market using data on six key sectors in Kuwait economy. This paper contributes to the existing literature by taking into account leverage effect, and skewed-fat-tailed aspects of volatility when estimating beta coefficients.

The reminder of the paper is structured as follows. The next section includes summary statistics. Section three outlines beta and volatility modeling approach. Section four includes estimation results. The final section concludes the study.

2. Data and Summary Statistics

Data employed in this study are daily stock price indices related to five sectors in Kuwait stock market, beside the aggregate stock index. The sample period covers from July-1-2002 to Feb-30-2008, including 1410 observations. The sectors included in this study are, banks; food; industrial; real estate; and the service sectors. Results in table (1) indicate that all sectors yield positive mean returns. The high values of kurtosis statistics indicate the stock price returns distribution is characterized by high peakness (fat tailedness) . The negative skewness results indicate that Kuwait portfolio investments exhibit high probability of negative returns, which is similar to the case in some developed and emerging markets as indicated by Harvey and Siddique (1999).

	Banks Sector	Food Sector	Industrial Sector	Real Estate Sector	Service Sector	Market Index
Mean	0.1E-2	0.7E-3	0.9E-3	0.9E-3	0.1E-2	0.1E-2
Skewness	-15.2	-13.1	-15.3	-14.6	-15.1	-15.1
Excess kurtosis	704	594	705	673	687	694
JB test	3856	2485	4348	3363	4400	5527
p-value	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Q(5)	356	319	353	338	346	351
p-value	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
$Q^{2}(5)$	355	354	352	354	355	355
p-value	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
LM ARCH(1)	141	1.50	226	8.77	32.3	27.3
p-vlue	(0.00)	(0.47)	(0.00)	(0.01)	(0.00)	(0.00)
LM ARCH(5)	208	567	579	567	539	568
p-value	(0.00)	(0.00)	(0,00)	(0.00)	(0.00)	(0.00)

Table (1): Summary Statistics of Log Differenced Stock Returns

Note: Highlighted values are significant at 5% significance level.

The Jarque-Bera (JB) test statistic provides clear evidence to reject the nullhypothesis of normality for the unconditional distribution of the daily stock price changes for all sectors. The sample autocorrelation statistic indicated by Ljung-Box , Q statistic, show the Q(5) test statistic reject the null hypothesis of uncorrelated price changes up to five lags for all sectors. The high values for $Q^2(5)$ test statistic suggest that conditional homoskedasticity can be rejected for all sectors. To test the presence of hetroskidasticity more formally the LM test is employed. Results of LM statistics for ARCH(1) and ARCH(5) error terms confirm the significance of ARCH effects in the data.

3. Methodology 3.1Beta and Volatility modeling

Although the simple GARCH specification is widely used in the empirical research of finance, there is substantial evidence to show that volatility of asset returns is characterized by time varying asymmetry (Glosten, Jagannathan and Runkle (1993). As a result, to avoid misspecification of the conditional variance equation, a leverage term in the GARCH specification is included. The GARCH-type specification introduced by Glosten, et al, (1993) allows a quadratic response of volatility to news with different coefficients for good and bad news, but maintains the assertion that the minimum volatility will result when there is no news⁽³⁾. Given the capital market model,

$$R_{it} = \eta_i + \beta_i R_{mt} + e_{it}$$
(1)
where $e_t = \sigma_t z$
 $z_t \stackrel{i.id}{\sim} f(\omega; 0, 1)$
and $\sigma_t^2 = \alpha_0 + \sum_{q=1}^Q \alpha_q e_{t-q}^2 + \sum_{p=1}^P \delta_p \sigma_{t-p}^2 + \varepsilon_t$

where R_{mt} is the return on market portfolio, R_{it} is the return on sector i, and η_i and β_i are the associated portfolio mean, and beta respectively. f(.) is the density function of the standardized residuals, z_t , where $E(z_t) = 0$, $v(z_t) = 1$, and ω is a vector of the parameters reflecting skewness and kurtosis parameters.

Beta coefficient in (1) reflects the sensitivity of industry return to change in market return. Thus, a portfolio with beta greater than one is considered more sensitive to market conditions⁽⁴⁾. In GARCH-type models the variance-covariance matrix of the different portfolios and the market index returns are not constant over time. In this case Beta is defined as:

$$\beta_{ii}^{GARCH} = \frac{\operatorname{cov}(R_{ii}, R_{mi})}{\operatorname{var}(R_{mi})}$$
(2)

so that equation (1) becomes,

$$\overline{R}_{mt} = (1/N) \sum_{i=1}^{N} R_{it} = \sum_{i=1}^{N} (1/N) (\overline{\eta}_i + \beta_i R_{mt} + e_{it})$$
$$= \overline{\eta} + \overline{\beta} \, \overline{R}_{mt} + \overline{e}$$
$$\rightarrow \overline{\eta} = 0, \, \overline{\beta} = 1$$

⁽³⁾ Any selection of an appropriate ARCH/GARCH model requires having a good idea of what empirical regularities the model should capture. Among documented other regularities in the literature are thick tails that characterize asset returns, and volatility clustering, which refers to the phenomena that large changes in volatility tend to be followed by large changes of either sign, and small changes to be followed by small changes.

⁽⁴⁾ An important implication of Market Model represented by (1) is that the average beta for all sectors is equal to one. To see this note that the average market index is given as:

$$R_{it} = \eta_i + \beta_{it}^{GARCH} R_{mt} + e_{it}$$
(3)

One approach to estimating β_{it}^{GARCH} is to estimate conditional covariance, $cov(R_{it}R_{mt})$ and conditional market variance $v(R_{mt})$. Adopting asymmetric GARCH-type model the problem can be reduced to estimating the following specifications of variance and covariance equations:

$$\operatorname{var}(R_{it}) \equiv \sigma^{2}_{it} = \omega + \sum_{j} [\alpha_{j}^{+} I(e_{i,t-j} > 0) | e_{i,t-j} |^{\lambda} + \alpha_{j}^{-} (I-1)(e_{i,t-j} \le 0) | e_{i,t-j} |^{\lambda}] + \sum_{j=1} \delta_{j} \sigma^{2}_{i,t-j}$$
(4)

where I denotes an indicator function taking on the values of 1 when $e_{t-i} > 0$, and 0 otherwise. The threshold ARCH (TARCH) model of Zakoian (1993) corresponds to equation (4) with $\lambda = 1$, whereas GJR–GARCH –type specification treats equation (4) with $\lambda = 2$, to allow for quadratic response of volatility to news with different coefficients for good and bad news, while maintaining the possibility that minimum volatility occurs when there is no news. Similarly, the variance of market portfolio from equation (4) holds with the change of the subscript from i to m.

The situation that $\alpha^+ > 0$, captures the asymmetric relationship between news (e_i) and volatility. For example, when $e_{it-j} > 0$, then I=1 and the conditional variance becomes,

$$\sigma^{2}_{it} = \omega + \sum_{j,q} \alpha_{i}^{+} e^{2}_{i,t-j} + \sum_{j,p} \delta_{j} \sigma^{2}_{i,t-j}$$

and when $e_{it-i} < 0$, then I=0 and the conditional variance becomes

$$\sigma^{2}_{it} = \omega + \sum_{j,q} \alpha_{i}^{-} e^{2}_{i,t-j} + \sum_{j,p} \delta_{j} \sigma^{2}_{i,t-j}$$

Therefore, the negative news result in a variance level different from that associated with positive news.

Since it can be verified from (4), that $E(R_i - E(R_i))^2 = E(e_i^2)$ then $v(R_i) = v(e_i), v(R_m) = v(e_m)$. Then the conditional covariance of individual sectors and market portfolio can be computed by:

$$\operatorname{cov}(R_{it}, R_{mt}) = \rho_{im} \sqrt{\sigma^2_{it} \sigma^2_{mt}}$$
(5)

where ρ_{im} is the correlation coefficient between R_{it} and R_{mt} .

3.2 Skewed Distribution

It is well documented that even asymmetric GARCH models fail to fully account for skewness and leptkurtosis of high frequency financial time series when they are assumed to follow normal or symmetric Student's t-distributions. This has led to the use of asymmetric non-normal distributions to better specify conditional higher moments. An important candidate in this respect is Hansen's (1994) skewed tdistribution. Despite the fact that there are other distributions that allow for skewness and excess kurtosis we choose Hansen's distribution due to its relative simplicity and its superiority in empirical performance (Patton, 2004).

Given the standardized errors $\frac{\varepsilon_t}{\sqrt{\sigma_t^2}} = z_t$, with mean zero and variance one, then Hansen's (1994) autoregressive conditional density model with skewed error terms is specified as:

$$skt(z \setminus \phi, \theta) = \begin{cases} bc \left(1 + \frac{1}{\theta - 2} \left(\frac{bz + a}{1 - \phi}\right)^2\right)^{-(\theta + 1)/2} & \text{if } z < -a/b \\ bc \left(1 + \frac{1}{\theta - 2} \left(\frac{bz + a}{1 + \phi}\right)^2\right)^{-(\theta + 1)/2} & \text{if } z \ge -a/b \end{cases}$$

$$(6)$$

where

$$a = 4\phi c \frac{\theta - 2}{\theta - 1}, \quad b = 1 + 3\phi^2 - a^2, \quad c = \frac{\Gamma(\theta + 1)/2}{\sqrt{\pi(\theta - 2)}\Gamma(\theta/2)}$$
 (7)

and Γ denotes gamma function.

Specification of conditional distribution of the standardized residuals, z_{t} , in equation (6) is determined by two parameters, Kurtosis (θ) and the skewness parameter (ϕ). The two parameters are restricted to $\theta > 2$, and $-1 < \phi < 1$. When $\phi = 0$, the skewed t-distribution tends to a symmetric t-distribution, and when $\theta \rightarrow \infty$, it tends to standardized normal distribution.

Hansen's skewed t-distribution is fat tailed, and skewed to the left (right) when ϕ is less (greater) than zero. Similar to the case of Student's t-distribution, when $\theta > 2$, Hansen's skewed t-distribution is well defined and its second moment exists, while skewness exists if $\phi \neq 0$, and kurtosis is defined if $\theta > 4$,. The formulas for the third and fourth moments of Hansen's skewed distribution are given as:

$$E(Z^{3}) = (m_{3} - 3am_{2} + 2a^{3})/b^{3}$$

$$E(Z^{4}) = (m_{4} - 4am_{3} + 6a^{2}m_{3} + 6a^{2}m_{2} - 3a^{4})/b^{4}$$

where

$$m_{2} = 1 + 3\phi^{2}$$

$$m_{3} = 16c\phi(1 + \phi^{2})\frac{(\theta - 2)^{2}}{(\theta - 1)(\theta - 3)} \qquad \text{if } \theta > 3$$

$$m_{4} = 3\frac{\theta - 2}{\theta - 4}(1 + 10\phi^{2} + 5\phi^{4}) \qquad \text{if } \theta > 4$$

(for proof see Hansen, 1994, and also Jondeau, and Rockinger 2000). The log-likelihood function of the GJR-skt is defined as:

$$L(\Omega; \Psi_{t-1}) = \sum_{t=2}^{T} \ln[SKt(z \setminus \theta, \phi; \Psi_{t-1})]$$

The maximum likelihood estimator for Ω is the solution of maximizing the log likelihood function stated above.

3.3 Performance Evaluation

In the following the predictive power of volatility forecast is utilized to evaluate the performance of the two models, the Normal distribution and skew-t distribution. To compute s-step ahead forecast for the conditional variance in equations (1) - (4), we need first to simplify equation (4) by assuming:

$$E(I(e_t > 0) = p(e_t > 0) = 0.5$$

$$E(I-1)(e_t \le 0) = p(e_t \le 0) = 0.5$$

and

$$E(e^2 \setminus \Omega_t) = \sigma_t^2$$

Since e_t^2 and the indicator function $I_t(e_t)$ are uncorrelated, then s-step ahead forecast can be stated as:

$$\hat{\sigma}^{2}_{t+s\backslash t} = w + [(0.5\alpha^{+} + 0.5\alpha^{-}) + \delta]\sigma^{2}_{t+s-1\backslash t}$$
(8)

The parameters of the two models are estimated using the sample data up to three days before the end of the sample date (Feb/27/2008). And then a forecast of one day ahead (Feb-28 observation) is computed. Using the estimated parameters and the one day-ahead forecast value of volatility a new forecast for volatility of Feb-29, is computed from equation (8) to obtain two days ahead forecast value. This procedure is repeated until we exhaust the actual realized values.

To test the predictive power of the two competing models (GJR-N, and GJR-skt) the Root Mean Squared Error (RMSE) is employed, which is computed by comparing the forecast values F_{t+i} with the actually realized values, A_{t+i} , or

$$RMSE(k) = \sqrt{\sum_{j=0}^{N_k - 1} [F_{t+j+k} - A_{t+j+k}]^2} \frac{1}{N_k}$$

Where k=1,2,3 denotes the forecast step, N_k , is total number of k-steps ahead forecasts.

Diebold and Mariano (1995) (DM) test has been employed to compare the accuracy of forecasts. When comparing forecasts from two competing models; model A, and model B, it is important to verify that prediction of model A is significantly more accurate, in terms of a loss function, DM(d), than the prediction of model B. The Diebold and Mariano test aims to test the null hypothesis of equality of forecast accuracy against the alternative of different forecasts across models. The null hypothesis of the test can be written as:

$$d_{t} = E(h(e_{t}^{A}) - h(e_{t}^{B})) = 0$$
(9)

where $h(e_t^{i})$ refers to the forecast error of model i =A, B, when performing ksteps ahead forecast. The Diebold and Mariano test uses the autocorrelation-corrected sample mean of d_t in order to test significance of equation (9). If N observations are available, the test statistic is:

$$DM = [\hat{w}(\overline{d})]^{-1/2} \overline{d}$$

where $\hat{w}(\overline{d}) = \frac{1}{N} \{\hat{\rho}_0 + 2\sum_{h=1}^{K-1} \hat{\rho}_h\}$
and

$$\hat{\rho}_{h} = \frac{1}{N} \sum_{t=h+1}^{N} (d_{t} - \overline{d})(d_{t-h} - \overline{d})$$

Under the null hypothesis of equal forecast accuracy, DM is asymptotically normally distributed.

4. Estimation Results

Estimation of beta coefficient based on conditional volatility of stock returns, assuming asymmetric GARCH specification under Normal distribution (GJR-N); and Skewed t-distribution (GJR-skt) of error terms is reported in table (2). Table (A1) in the appendix includes estimation results of the parameters of equations (4), (6), and (7). The significance of the asymmetry coefficient (α^+) for the Normal distribution for all sectors indicates positive shocks (or good news) have more significant effect on volatility than the effect of bad news. This result indicates that since investors in stock markets seek short term profit gains they attempt to benefit from positive news they seize often, but adjusting portfolios to negative shocks depends on the size of the shock, because portfolio adjustment to adverse shocks requires hedging aspects that entails additional cost.

Results of the skewed t-distribution also indicate the significance of the Kurtosis coefficient (θ) for all sectors, which suggest fat-tailed student t-density is needed to fully model the distribution of return. The log-likelihood values strongly suggest that the skewed-t distribution model outperform the Normal distribution model. Moreover, Root Mean Square Error (RMSE) and Diebold-Mariano (1995) test results in table (3), indicate the skewed-t distribution model yields the lowest values of the RMSE loss functions for all sectors compared to the Normal distribution specification. Thus, DM test statistic confirms that the predictive power of the two models are significantly different for all sectors; implying that skewed-t distribution model yields superior forecast performance for forward-looking beta values.

It is apparent from the range of beta values that both models support evidence of time-varying beta values for all sectors. Based on the skewed-t distribution model results, Beta values for Banks, and real estate sectors exhibit wider range compared to the remaining other sectors. The high values of the correlation coefficient values confirm strong association between volatilities of the sectors and the market volatility.

	CIR-CARCH	CIR-CARCH	
Sectors	UJK-UAKCH		
	Normal dist.	SK-t dist.	
Banks	1.51	3.89	
(low/high)	(0.68/25.1)	(0.46/4.27)	
Range	24.4	3.8	
ho	0.75	0.69	
Food	0.17	2.38	
(low/high)	(0.01/7.3)	(0.7/2.97)	
Range	7.3	2.3	
ρ 0.78		0.88	
Industry	1.69	3.5	
(low/high)	(0.71/1.72)	(0.22/3.8)	
Range	1.01	3.6	
ho	0.79	0.62	
Real Estate	0.64	3.17	
(low/high)	(0.16/0.74)	(1.27/6.18)	
Range	0.6	4.9	
ho	0.89	0.95	
Service	0.76	2.54	
(low/high) (0.30/9.1)		(0.23/2.77)	
Range	8.8	2.5	
ho	0.78	0.66	

Table (2): Estimate of Beta Coefficients

Note: The first row entries are mean values of Betas. Range statistics refer to the difference between high and low values. ρ denotes correlation coefficient between volatilities of market index and sector portfolio.

	RMSE Lo	ss Functions	D&M
	GJR-N	GJR-sk(t)	statistic
Banks	1.36	0.15	7.99*
p-value			(0.00)
Food	0.93	0.016	79.9*
p-value			(0.00)
Industry	0.95	0.196	69.7*
p-value			(0.00)
Real estate	0.94	1.60	5.54*
p-value			(0.00)
Service	1.37	0.126	9.12*
p-value			(0.00)

Table (3): RMSE Loss Functions and Diebold & Mariano Test

Note: The loss functions are based on three days ahead forecast errors. * significant at 5% significance level.

5. Concluding remarks

Taking into account empirical regularities that characterize asset returns in emerging markets in this paper time-varying beta coefficients for the major sectors in Kuwait economy are estimated. Among the regularities that characterize asset markets are the "leverage effect" which refers to the different response of volatility to bad news as compared to good news, and skewness and fat-tailedness of stock returns distribution. To account for the asymmetric effect of news on asset returns' volatility in this paper Glosten, Jagannathan, and Runkle (1993) specification is adopted under two alternative assumptions about stock returns distribution, the Normal distribution and skewed t-distribution specification.

Results of predictive power performance and log-likelihood values support overwhelmingly, evidence of GJR-skewed-t distribution model superiority over GJR-Normal distribution specification when modeling volatility in Kuwait stock market.

The findings in the paper also support evidence of time-varying beta values for all sectors included in the study. However, banks, and real estate sectors exhibit relatively wider range of beta coefficients compared to the beta values of the other sectors in the study. The implication of relatively wider range of beta variation for banks and real estate sectors includes not only higher risk for the securities of these two sectors, as their average betas exceed the market beta, which is equal to one, but also reflect the difficulty of controlling and managing risk associated with securities of these two sectors.

References

Brooks, R., Faff, R. and Aritt, M., (1998) "<u>An Investigation into the Extent of Beta</u> <u>Instability in the Singapore Stock Market</u>" Pacific Basin Finance Journal, Vol.6, pp.87-101.

Diebold, F., and Mariano, R., (1995) "<u>Comparing Predictive Accuracy</u>" Journal of Business and Economic Statistics, Vol.13, No.3, pp. 253-263.

Engle, R., and Ng, V., (1993) "<u>Measuring and Testing The Impact of News on</u> <u>Volatility</u>" The Journal of Finance, Vol.48, pp. 1749-1778.

Hansen, B., (1994) "<u>Autoregressive Conditional Density Estimation</u>" International Economic Review, Vol. 35, No.3, pp.705-730.

Harvey, C., and Siddique, A., (1999) "<u>Autoregressive Conditional Skewness</u>" Journal of Financial and Quantitative Analysis, Vol.34, pp.465-487.

Glosten, L., Jagannathan, R., and Runckle, D., (1993) "<u>On the Relation Between The Expected Value and the Volatility of the Nominal Excess Return on Stocks</u>" Journal of Finance, Vol.48, pp. 1779-1802.

Faff, R., Hillier, D., and Hillier, J., (2000) "<u>Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques</u>" Journal of Business Finance and Accounting, Vol.27, pp.523-554.

Fama, E., and French, K., (1992) "<u>The Cross-Section of Expected Stock Returns</u>" Journal of Finance, Vol.47, No.2, pp.427-465.

Fama, E., and French, K., (1993) "<u>Common Risk Factors in the Returns on Stocks</u> and Bonds" Journal of Financial Economics, Vol.33, No.1, pp.3-56.

Fama, E., and French, K., (1995) "<u>Size and Book-to-Market Factors in Earnings and</u> <u>Returns</u>" Journal of Finance, Vol. 50, No.1, pp.131-155.

Fama, E., and French, K., (1996) "<u>Multifactor Explanations of Asset Pricing</u> <u>Anomalies</u>" Journal of Finance, Vol. 51, No.1, pp.55-84.

Fama, E., and French, K., (1997) "<u>Industry Costs of Equity</u>" Journal of Financial Economics, Vol.43, No.2, pp.153-193.

Jondeau, E., and Rockinger, M., (2000) "<u>Conditional Volatility, Skewness and</u> <u>Kurtosis: Existence and Persistence</u>" Working Paper, HEC School of Management.

Kanwer, A., (2006) "<u>Exploring Time Variation in Betas in Pakistan</u>" Manuscript, International Middle East Economic Association Conference, Dubai, UAE Lie, F., Brooks, R., and Faff, R., (2000) "<u>Modelling the Equity Beta Risk of</u> <u>Australlian Financial Sector Companies</u>" Australian Economic Papers, Vol.39, pp.301-311.

McKenzie, M., Brooks R., and Faff, R. and Ho Y. (2000) "<u>Exploring the Economic</u> <u>Rationale of Extremes in GARCH Generated Betas: The Case of U.S., Banks.</u>" The Quarterly Review of Economics and Finance, Vol.40, pp. 85-106.

Moonis, S., Shah, A. (2003) "<u>Testing for Time Variation in Beta in India</u>" Journal of Emerging Markets Finance, Vol.2, No.2, pp.163-180.

Patton, A., (2004) "<u>On the Out-of-Sample Importance of Skewness and Asymmetric</u> <u>Dependence for Asset Collection</u>" Journal of Financial Econometrics, Vol.2, No.1, pp. 130–168.

Yu, J., (2002) "Forecasting Volatility in The New Zealand Stock Market" Applied Financial Economics, Vol.12, pp.193-202.

Whister, D., and White, K., (2004) :Shazam Software, and Users Reference Manual, Version 10, Northwest Econometrics Ltd.

Zakoian, J., and Rabemananjara, R.,(1993) "<u>Threshold ARCH Models and</u> <u>Asymmetries in Volatility</u>" Journal of Applied Econometrics, Vol. 8, pp. 31-49.

Appendix

	Banks		Food		Industry	
	GARCH	(1,1)	ARCH(1)		ARCH(1)	
	GJR-t	GJR-	GJR-t	GJR-	GJR-t	GJR-
	skew	Normal	skew	Normal	skew	Normal
ω	0.11	0.09	0.03	0.02	0.11	0.09
(p-value)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
δ	0.36	0.42	0.29	0.41	0.42	0.49
(p-value)	(0.00)	(0.00)	(0.02)	(0.00)	(0.00)	(0.00)
α^+	0.00	0.26	0.26	0.06	0.00	0.06
(p-value)	(0.64)	(0.00)	(0.30)	(0.00)	(0.60)	(0.00)
α^{-}	0.47	-0.00	-2.5	0.01	0.20	-0.00
(p-value)	(0.85)	(0.99)	(0.59)	(0.11)	(0.00)	(0.99)
ϕ	0.46		0.99		0.99	
(p-value)	(0.15)		(0.16)		(0.16)	
θ	2.96		3.91		3.91	
(p-value)	(0.00)		(0.00)		(0.00)	
LnL	3909	3619	10145	8806	8474	2749

Table (A1):Estimation of Parameter*

Note: All values rounded to two decimals.

*The lag parameters (p,q) determined based on stationarity restrictions. An examination of the coefficients in GARCH specification in the table reveals that h_{it} for Food and Industry, follow stationary ARCH(1), whereas for Banks follow GARCH(1,1). The highlighted values are significant at 5% significance level.

	Rea AR	l estate CH(1)	Service GARCH(1,1)		
	GJR-t	GJR-	GJR-t	GJR-	
	skew	Normal	skew	Normal	
ω	0.04	0.03	0.00	0.04	
(p-value)	(0.00)	(0.00)	(0.00)	(0.00)	
δ	0.31	0.49	0.33	0.50	
(p-value)	(0.00)	(0.00)	(0.00)	(0.00)	
α^+	0.52	0.13	0.51	0.20	
(p-value)	(0.30)	(0.00)	(0.60)	(0.00)	
α^{-}	0.20	-0.00	1.1	-0.00	
(p-value)	(0.00)	(0.99)	(0.00)	(0.99)	
ϕ	0.99		0.99		
(p-value)	(0.15)		(0.16)		
θ	3.9		3.91		
(p-value)	(0.00)		(0.00)		
LnL	9671	3828	4674	2832	

Table (A2): Estimation of Parameter*

Note: All values rounded to two decimals.

The lag parameters (p,q) determined based on stationarity restrictions. An examination of the coefficients in GARCH specification in the table reveals that h_{it} for Real Estate sector follow stationary ARCH(1), whereas Service sector follows GARCH(1,1). The highlighted values are significant at 5% significance level.

Previous Publications

No	Author	Title		
API/WPS 9701	جميل طاهر	النفط والتنمية المستديمة في الأقطار العربية : الفرص والتحديات		
API/WPS 9702	Riad Dahel	Project Financing and Risk Analysis		
API/WPS 9801	Imed Limam	A SOCIO-ECONOMIC TAXONOMY OF ARAB COUNTRIES		
API/WPS 9802	محمد عدنان وديع بلقاسم العباس	منظومات المعلومات لأسواق العمل لخليجية		
API/WPS 9803	Adil Abdalla	The Impact of Euro-Mediterranean Partnerships on Trade Interests of the OIC Countries		
API/WPS 9804	رياض دهال حسن الحاج	حول طرق الخصخصة		
API/WPS 9805	Ujjayant Chakravorty Fereidun Fesharaki Shuoying Zhou	DOMESTIC DEMAMD FOR PETROLEUM PRODUCTS IN OPEC		
API/WPS 9806	Imed Limam Adil Abdalla	Inter-Arab Trade and the Potential Success of AFTA		
API/WPS 9901	Karima Aly Korayem	Priorities of Social Policy Measures and the Interset of Low-Income People; the Egyptian Case		
API/WPS 9902	Sami Bibi	A Welfare Analysis of the Price System Reforms' Effects on Poverty in Tunisia		
API/WPS 9903	Samy Ben Naceur Mohamed Goaied	The Value Creation Process in The Tunisia Stock Exchange		
API/WPS 9904	نجاة النيش	كاليف التدهور البيئي وشحة الموارد الطبيعية: بين النظرية وقابلية التطبيق في دول العربية		
API/WPS 9905	Riad Dahel	Volatility in Arab Stock Markets		
API/WPS 9906	Yousef Al-Ebraheem Bassim Shebeb	IMPORTED INTERMEDIATE INPUTS: IMPACT ON ECONOMIC GROWTH		
API/WPS 9907	Magda Kandil	Determinants and Implications of Asymmetric Fluctuations: Empirical Evidence and Policy Implications Across MENA Countries		
API/WPS 9908	M. Nagy Eltony	Oil Price Fluctuations and their Impact on the Macroeconomic Variables of Kuwait: A Case Study Using a VAR Model		
API/WPS 9909	علي عبد القادر	إعادة رؤوس الأموال العربية إلى الوطن العربي بين الأماني والواقع		
1API/WPS 000	محمد عدنان وديع	التنمية البشرية ، تنمية الموارد البشرية والإحلال في الدول الخليجية		
2API/WPS 000	محمد ناجي التوني	برامج الأفست : بعض التجارب العربية		
API/WPS 0003	Riad Dahel	On the Predictability of Currency Crises: The Use of Indicators in the Case of Arab Countries		
API/WPS 0004	نسرين بركات عـادل العلــي	مفهوم التنافسية والتجارب الناجحة في النفاذ إلى الأسواق الدولية		

No	Author	Title	
API/WPS 0101	Imed Limam	Measuring Technical Efficiency Of Kuwaiti Banks	
API/WPS 0102	Ali Abdel Gadir Ali	Internal Sustainability And Economic Growth In The Arab States	
API/WPS 0103	Belkacem Laabas	Poverty Dynamics In Algeria	
API/WPS 0104	محمد عدنان وديع	التعليم وسوق العمل : ضرورات الاصلاح حالة الكويت	
API/WPS 0105	محمد ناجي التوني	دور وآفاق القطاع السياحي في اقتصادات الأقطار العربية	
API/WPS 0106	نجاة النيش	الطاقة والبيئة والتنمية المستديمة : آفاق ومستجدات	
API/WPS 0107	Riad Dahel	Telecommunications Privatization in Arab Countries: An Overview	
API/WPS 0108	علي عبد القادر	أسس العلاقة بين التعليم وسوق العمل وقياس عواند الاستثمار البشري	
API/WPS 0201	أحمد الكواز	مناهج تقدير المداخيل المختلطة في الأقطار العربية	
API/WPS 0202	سليمان شعبان القدسي	الكفاءة التوزيعية لشبكات التكافل الاجتماعي في الاقتصاد العربي	
API/WPS 0203	Belkacem Laabas and Imed Limam	Are GCC Countries Ready for Currency Union?	
API/WPS 0204	محمد ناجي التوني	سياسات العمل والتنمية البشرية في الأقطار العربية : تحليل للتجربة الكويتية	
API/WPS 0205	Mustafa Babiker	Taxation and Labor Supply Decisions: The Implications of Human Capital Accumulation	
API/WPS 0206	Ibrahim A. Elbadawi	Reviving Growth in the Arab World	
API/WPS 0207	M. Nagy Eltony	The Determinants of Tax Effort in Arab Countries	
API/WPS 0208	أحمد الكواز	السياسات الاقتصادية ورأس المال البشري	
API/WPS 0209	Mustafa Babiker	The Impact of Environmental Regulations on Exports: A Case Stud of Kuwait Chemical and Petrochemical Industry	
API/WPS 0301	Samir Makdisi, Zeki Fattah and Imed Limam	Determinants Of Growth In The Mena Countries	
API/WPS 0302	طارق نوير	دور الحكومة الداعم للتنافسية ''حالة مصر''	
API/WPS 0303	M. Nagy Eltony	Quantitative Measures of Financial Sector Reform in the Arab Countries	
API/WPS 0304	Ali Abdel Gadir Ali	Can the Sudan Reduce Poverty by Half by the Year 2015?	
API/WPS 0305	Ali Abdel Gadir Ali	Conflict Resolution and Wealth Sharing in Sudan: Towards an Allocation Formula	
API/WPS 0306	Mustafa Babiker	Environment and Development in Arab Countries: Economic Impacts of Climate Change Policies in the GCC Region	
API/WPS 0307	Ali Abdel Gadir Ali	Globalization and Inequality in the Arab Region	
API/WPS 0308	علي عبد القادر علي	تقييم سياسات وإستراتيجيات الإقلال من الفقر في عينة من الدول العربية	

No	Author	Title		
API/WPS 0401	Belkacem Laabas and Imed Limam	Impact of Public Policies on Poverty, Income Distribution and Growth		
API/WPS 0402	Ali Abdel Gadir Ali	Poverty in the Arab Region: A Selective Review		
API/WPS 0403	Mustafa Babiker	Impacts of Public Policy on Poverty in Arab Countries: Review of the CGE Literature		
API/WPS 0404	Ali Abdel Gadir Ali	On Financing Post-Conflict Development in Sudan		
API/WPS 0501	Ali Abdel Gadir Ali	On the Challenges of Economic Development in Post-Conflict Sudan		
API/WPS 0601	Ali Abdel Gadir Ali	Growth, Poverty and Institutions: Is there a Missing Link?		
API/WPS 0602	Ali Abdel Gadir Ali	On Human Capital in Post-Conflict Sudan: Some Exploratory Results		
API/WPS 0603	Ahmad Telfah	Optimal Asset Allocation in Stochastic Environment: Evidence on the Horizon and Hedging Effects		
API/WPS 0604	Ahmad Telfah	Do Financial Planners Take Financial Crashes In Their Advice: Dynamic Asset Allocation under Thick Tails and Fast volatility Updating		
API/WPS 0701	Ali Abdel Gadir Ali	Child Poverty: Concept and Measurement		
API/WPS 0702	حاتم مهران	التضخم في دول مجلس التعاون الخليجي ودور صناديق النفط في الاستقرار الاقتصادي		
API/WPS 0801	Weshah Razzak	In the Middle of the Heat The GCC Countries Between Rising Oil Prices and the Sliding Greenback		
API/WPS 0802	Rabie Nasser	Could New Growth Cross-Country Empirics Explain the Single Country Growth of Syria During 1965-2004?		
API/WPS 0803	Sufian Eltayeb Mohamed	Finance-Growth Nexus in Sudan: Empirical Assessment Based on an Application of the Autoregressive Distributed Lag (ARDL) Model		
API/WPS 0804	Weshah Razzak	Self Selection versus Learning-by-Exporting Four Arab Economies		
API/WPS 0805	رشا مصطفى	اتفاقية أغادير: نحو بيئة أعمال أفضل		
API/WPS 0806	Mohamed Osman Suliman & Mahmoud Sami Nabi	Unemployment and Labor Market Institutions: Theory and Evidence from the GCC		
API/WPS 0901	Weshah Razzak & Rabie Nasser	A Nonparametric Approach to Evaluating Inflation-Targeting Regimes		
API/WPS 0902	Ali Abdel Gadir Ali	A Note on Economic Insecurity in the Arab Countries		
API/WPS 0903	وشاح رزاق	الأزمة المالية الحالية		
API/WPS 0904	Ali Abdel Gadir Ali	The Political Economy of Inequality in the Arab Region and Relevant Development Policies		
API/WPS 0905	Belkacem Laabas Walid Abdmoulah	Determinants of Arab Intraregional Foreign Direct Investments		
API/WPS 0906	Ibrahim Onour	North Africa Stock Markets: Analysis of Unit Root and Long Memory Process		
API/WPS 0907	Walid Abdmoulah	Testing the Evolving Efficiency of 11 Arab Stock Markets		
API/WPS 0908	Ibrahim Onour	Financial Integration of North Africa Stock Markets		
API/WPS 0909	Weshah Razzak	An Empirical Glimpse on MSEs Four MENA Countries		
API/WPS 0910	Weshah Razzak	On the GCC Currency Union		
API/WPS 0911	Ibrahim Onour	Extreme Risk and Fat-tails Distribution Model: Empirical Analysis		

No	Author	Title
API/WPS 0912	Elmostafa Bentour Weshah Razzak	Real Interest Rates, Bubbles and Monetary Policy in the GCC countries
API/WPS 1001	Ibrahim Onour	Is the high crude oil prices cause the soaring global food prices?